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We study the dynamics of phase ordering of a nonconserved, scalar order parameter in one dimension,

with long-range interactions characterized by a power law r ¢77.

In contrast to higher-dimensional

systems, the point nature of the defects allows simpler analytic and numerical methods. We find that, at
least for o > 1, the model exhibits evolution to a self-similar state characterized by a length scale which
grows with time as #!/!*?) and that the late-time dynamics is independent of the initial length scale.
The insensitivity of the dynamics to the initial conditions is consistent with the scenario of an attractive,
nontrivial renormalization-group fixed point which governs the late-time behavior. For o <1 we find in-
dications in both the simulations and an analytic method that this behavior may be dependent on system

size.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

The problem of the dynamical behavior of systems
quenched from a disordered phase to an ordered phase
has proven to be difficult to solve [1]. At late times the
dynamics is described by the motion of domain walls
separating equilibrated regions. It is believed that the
domain wall morphology is self-similar in time, and
characterized by a length scale growing with a power law
tP. The universal nature of the dynamics has prompted
attempts to incorporate a renormalization-group scheme
in describing the asymptotically late times [2], and also to
determine the various universality classes. The value of p
appears to depend strongly on the presence or absence of
conservation laws, and also on the dimension of the order
parameter. Unlike equilibrium critical phenomena, how-
ever, the dimension of the system does not play a key
role. The generally accepted value for a scalar, noncon-
served order parameter (to which we restrict ourselves in
this paper) with short-range interactions is p=1 [3,4].

Recent interest has been directed toward including
long-range interactions in the systems, characterized by a
power law V(r)~—r 977 [5]. Using energy dissipation
arguments, Bray and Rutenberg have found the growth
law exponent to be modified by the long-range interac-
tions. In particular, they argue that, in the case of the
scalar, nonconserved order parameter system,
p=1/(1+0o) for 0 <1, and that p=1 with logarithmic
corrections for c=1. For o > 1, and d > 1, they recover
the exponent for short-range interacting systems, p=1.

The addition of long-range interactions brings both
complication and simplification to the problem. The
complication stems from the fact that the local evolution
depends on the global state of the system, which makes
numerical simulation particularly difficult. However, one
simplification is that the presence of long-range interac-
tions allows the possibility of studying one-dimensional
systems, since it is known that for 0<o <1 the d =1 Is-
ing model has a nontrivial phase transition and thus
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an equilibrium two-phase region. Also, for higher-
dimensional systems long-range forces may dominate the
curvature forces, allowing the latter to be neglected. In
this paper, however, we restrict ourselves to one-
dimensional systems.

The contents of the paper are as follows: in the next
section we discuss the model for our system, a continuum
Langevin equation without the noise term. We show the
equivalence of this model to that of the dynamic Ising
model for nonconserved order parameter (Glauber dy-
namics [6]). In Sec. III we develop an approach based on
renormalization-group concepts, and propose a general
feature of the dynamics: asymptotic lack of dependence
on the initial length scale. We also present numerical
data for o =3 which is in disagreement with the predict-
ed value of p=1/(1+0), and also exhibits dependence
on the system size, L. The lack of dependence on the ini-
tial length scale and the system size dependence are the
principal results of this paper. In Sec. IV we describe a
fugacity expansion which leads to direct computation of
a Callan-Symanzik-type S function in the large o limit.
When we consider values of o =1 we find divergent terms
appearing in our expansion, which may be related to the
anomalous behavior in the simulations. However, in con-
trast, the Q — oo Potts model has similar divergences, but
when simulated seems to give the expected value of
p=1/(1+0). In Sec. V we present a method for cou-
pling the dynamics of the density and the two-particle
distribution function which leads to qualitatively accu-
rate results. In Sec. VI we discuss our simulation
methods, and in Sec. VII we present our conclusions.

II. THE MODEL

In the following section we present a low-temperature
mapping from the long-range Ising Hamiltonian with
spin degrees of freedom to a Hamiltonian with domain
wall degrees of freedom. Next we introduce dynamics to
the system via Langevin equations without a noise term.
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This is shown to be equivalent to Glauber dynamics when
o =1. Finally, we discuss related models which are
motivated by the simplifications they offer.

A. Ising Hamiltonian

We begin by considering the one-dimensional Ising
Hamiltonian

H=—J 3 s;5;V(x;

ij
i<j

where
Vix,—x;)=|x;—x;| "1+ )

and the lattice spacing a=1. It is known [7] that this
system has a phase transition with some nonzero T, when
0<o =1, and so there is a two-phase equilibrium region
for T <T,. Since we are interested in the dynamics of the
domain walls, which are point objects in this one-
dimensional case, it is convenient to map this Hamiltoni-
an with spin degrees of freedom to one with domain wall
degrees of freedom via a lattice equivalent of integration
by parts. The resultant Hamiltonian is (apart from sur-
face terms)

H=J 3 s/s;U(x;—x;), (3)
i j
where the lattice derivatives are defined as s/ =s;  ;—s;,
and the function U(x; —x i), the lattice equivalent of the
second antiderivative of V(x; —x ), is defined by

Vir)=U(r+1)=-2U(r)+U(r—1). 4)

The boundary conditions are chosen so that U(r) con-
tains no constant or linear pieces, with the solution for
r>>1

lr]'~°
4
(1=0) o(l1/r), o#1 5)

—log|r|+0O(1/r), o=1.

U(r)=

Since the limit of zero lattice spacing is well behaved, and
the important contributions from the long-range interac-
tions should be arising at large r, the late-time dynamics
of the theory should be unaffected by taking the continu-
um limit.

The s/ are zero everywhere neighboring spins are
aligned, and equal to *+2 at the domain boundaries.
Therefore the sum over spins can be replaced by a sum
over the positions of the domain walls. The sign, or
charge, of the domain walls will be alternating, with the
consequence that nearest neighbors will attract, next-
nearest neighbors will repel, and so on. Absorbing the
coupling constant J into a rescaling of the spins, we get
the Hamiltonian

sz (_1)i+jU(x,"_xj) . (6)
i,j
i<j
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B. Dynamical model

To add dynamics to this Hamiltonian we use
Langevin-type equations of motion, introducing a kinetic
coefficient T.

dx; oH

dr =“‘ng—" . (7

1

We neglect any possible noise term, for reasons which we
explain below. There is an additional rule to the dynam-
ics. When two charges meet each other they annihilate,
and are both removed from the system. In the original
spin picture this corresponds to an island of up spins
shrinking to zero in a background of down spins, or vice
versa.

These equations of motion for the domain walls are
equivalent, for 0 =1 and low temperatures, to using
Glauber dynamics for the spins [6]. To see this, consider
a Glauber dynamical Ising model with temperature j3, lat-
tice spacing a, and characteristic free spin flip rate a.
The flip rates for interacting spins are found via detailed
balance:

w(+) _

w(—)
where w(—) and w(+) are the rates for flips down and
up, respectively, and AE=E, —E_ is the energy
difference of the spin positions. We are interested in the
parameter range where w(— ) and w(+) are nearly equal
to a, or BAE is small. Consider an isolated pair of
domain walls separated by distance / as shown in Fig. 1.
The domain wall on the left can move through either a
spin A flip up or spin B flip down. If we assume that the
w(+) in the neighborhood of the domain wall are equal
to w( A4 +), and the w(—) are equal to w(B —), then the
motion of the wall will be a random walk superimposed
over a slight drift with velocity

exp(—BAE) , (8)

vg=alw(—)—w(+)]

=aqw(—)[1—e PAE]

=aaBAE+O((BAE)?) . )

The energy difference AE=J[U(l+a)—U(])]
~aJ(dU /dl) if ] >>a. If the domain wall position is la-
beled by x (so dI /dx = —1), then the drift velocity equa-
tion is
dx _

—_ 2 00U
7 a’afJ - (10)
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FIG. 1. An isolated pair of domain walls separated by a dis-
tance /. The domain wall on the left can move via a flip of spin
A or spin B. The difference in the up and down flip rates gives
rise to a drift velocity.
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This can be generalized to systems of multiple domain
walls by considering U(x —y) to be a pairwise interaction
energy which carries with it the appropriate sign for at-
tractive and repulsive interactions. By comparison to our
original Langevin equations we identify the kinetic
coefficient T =a%afJ.

Thus far we have neglected the possibility of domain
wall pair creation. The energy for pair creation at dis-
tances of order a is small, and even at low temperatures
will occur frequently. However, the energy required to
create a pair separated at a macroscopic distance I’ is
quite large relative to the energy required to move a
domain wall a distance a in the presence of another
domain wall at /. That is, for large B we can satisfy
simultaneously BJU(!')>>1 and aBJ(dU/dl)<<1 for
finite U, dU /dIl. The next question to address is which
process, the random walk or the deterministic drift, dom-
inates the dynamics at late times.

The characteristic length of a random walk at time ¢ is

Ixw = [(number of steps)Xa ]!/?
=(aat)’?. (an
Since a < I'T then
lgw~T"2t12 . (12)

There is also a length scale determined by the drift veloci-
ty which grows with time as

ldNtl/(1+0) , (13)

which is found from the equations of motion (see Sec.
III). The time dependence of these length scales deter-
mines which process controls the dynamics. For o>1
we find Igw >1; for large ¢, so a pair of charges can es-
cape annihilation via a random walk. This is the dynami-
cal picture of the disordered phase, as was found in the
nearest-neighbor Ising model [8]. For 0 =1 and T<T,
we find /; > Igw, which means that a pair of charges can
no longer escape annihilation. For o <1 also the drift
dominates the dynamics at low temperatures. While this
argument would suggest that this is true for all 7, it ig-
nores higher-order screening effects which renormalize J,
causing the random walk effects to dominate above the
critical point. When the drift does dominate, the pres-
ence of the random walk should cause at most a finite re-
normalization of the kinetic coefficient I'. To summarize,
the Glauber model of dynamics is equivalent to the
Langevin equations without noise for 0 <1 and T <T,,
and otherwise is equivalent to domain walls undergoing
random walks.

C. Related models

While 0 =1 is the physically interesting range, the
model, without noise, can be extended to values of o > 1.
If the late-time dynamics is described by some
renormalization-group fixed point, then this fixed point
might be qualitatively similar for all . For example, we
find in simulations that, to within our accuracy, the
length scale given by the density grows with power law
t1/1%9) for both 0 =1 and 2. In Sec. IV we show that
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the dynamical equations simplify in the large o limit of
this model. From this limit we can then work back to
study the behavior of models with smaller values of o.

A similar but more simple system than the Ising model
is the Q-state Potts model in the limit of Q — oo. This
model can be mapped to an interacting defect Hamiltoni-
an which has the same power-law interactions as the Is-
ing model, but only between nearest neighbors. All other
pairs are noninteracting, which makes this system much
easier to siinulate on the computer. The annihilation
rules are modified as well, in that a pair of defects annihi-
late to leave behind a single defect. A derivation of the
properties of this model is given in Appendix A.

III. SCALING ARGUMENTS
AND NUMERICAL RESULTS

A. Initial conditions and scaling functions

The initial conditions for the dynamical system are
drawn from some distribution. Measurements of the sys-
tem, such as the density »n(t), or the two-particle distribu-
tion function n,(r,t), are defined to be averaged over this
distribution. One could use a thermal distribution corre-
sponding to T, the prequench temperature of the sys-
tem. Instead we use an initial distribution where charges
are placed randomly with some initial density n,, which
for no=(2a)~! corresponds to the system being prepared
at T= oo prior to quenching. For values of ny<(2a)™!
the random distribution is no longer representative of a
thermal distribution, but this approach enables us to ex-
plore the sensitivity to initial conditions without the com-
plication of initial correlations.

To write scaling functions for the quantities such as the
density n(z), we consider all the parameters with dimen-
sion in the model. The initial density n, gives a length
scale, as does the system size L for finite systems. The
lattice spacing has been taken to zero. There is one other
length scale, given by time. One way to define this length
is by the range over which an isolated pair of charges will
annihilate in time ¢. For a pair of charges separated by
some distance / the equations of motion can be written as
a single differential equation

ﬂ:‘

—2T179 14
at (14)
which has the solution

I(H'ro=10)*t°—2(14+0)It . (15)

By setting /(#)=0 we see that the time to annihilation as
a function of the initial distance / is

1
=]l 16
i tor (16
We rescale the time
2(1+o)'t—t (17)

so that the length scale associated with time is

1,=t%, (18)
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where

¢ 1

T lto

(19)

is introduced for notational convenience. This length
scale given by %, as well as those of L and n, ! are the
only quantities with dimension in the system. Therefore

n(t)=no®(nyts Lt %) . (20)

Generally it is assumed that the density does not depend
on the system size, in which case we get the stronger scal-
ing law

n(t)=nyf(nyt) . 2n

To determine which of these scaling functions apply,
we first turn to numerical simulations (for details, see Sec.
VI). By varying the initial number of charges N, and sys-
tem size L such that the initial density n, is unchanged,
the system size dependence of the model can be directly
probed. For o =2 these plots superpose, shown in Fig. 2,
implying no system size dependence. For 0 =1 we find a
slight system size dependence (Fig. 3) wherein the smaller
systems drop below the scaling curve at late z.

We also measure the time dependence of the density
for =2, and find that it is consistent with the o <1 pre-
diction of n(z)~t~*¢ for large ¢ [5]. This result and the
scaling form of the density (21) have the corollary that
n(t) is independent of n,. That is, since f(x)= 4x ! for
large x, then

=At~¢ . (22)

A
n ( t ) ~hng
not ¢
We can plot the same data shown in Fig. 2, but rescaled
so all the runs have the same system size, but different in-
itial densities. In Fig. 4 we see that the plots converge to
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L 0%%“ 4

L o |
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FIG. 2. Simulations for o =2, shown on a log-log plot. The
system sizes used are L =100, 200, 400, and 800, and the initial
density is fixed at no=1. The data show no system size depen-
dence. The power law n ~t~!/? is plotted as a visual reference,
and is in good agreement with the data. The error bars for the
data are smaller than the points plotted.
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FIG. 3. Simulations for 0 =1. The same range of system
sizes is used as in Fig. 2. The data for smaller L values exhibit
slight system size dependence. The power law n ~t~!/? is plot-
ted as a visual reference. The statistical error bars are smaller
than the points plotted.

the same function asymptotically. We propose that the
lack of dependence on the initial length scale may be a
general feature of the late-time dynamics. This is sugges-
tive of T, independence for initial conditions correspond-
ing to thermal distributions.

B. Renormalization-group approach

The dynamics of the system, for o =2 at least, appears
to be scale invariant at late times. That is, evolving the
system from time ¢, to ¢,, where both times are chosen
from the late-time region, is the same as rescaling the sys-
tem at ¢, by a factor of

9
b= |2 (23)
4
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FIG. 4. The same data for o =2 as shown in Fig. 2, but res-
caled so that L =100 and the initial density n,=1, 2, 4, and 8.
The curves collapse to a single function, implying the system is
independent of the initial density at late times.
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Stated another way, the time-dependent domain wall
probability distribution is invariant under a rescaling of
the system that includes the length scale of time (but not
the initial length scale). The numerical data for the den-
sity is consistent with this presumed scale invariance,
since n(t)= At ¢ is preserved under rescaling n—n /b
and t —th /5.

This scale invariance motivates an analogy to a
second-order critical point in equilibrium statistical
mechanics, where renormalization-group (RG) methods
are applicable [9]. The general RG approach is a two-
step process. First one integrates out the short distance
behavior of the system from some cutoff a to ba, creating
an effective theory with modified coupling constants.
Second, one rescales the system by the factor b, restoring
the original value of the cutoff. The behavior of the cou-
pling constants under this transformation determines the
renormalization flow of the theory. The analog of in-
tegrating out the short-distance behavior is evolving the
system forward in time [2]. The system is then rescaled
back to the original point in time, giving a modified
theory. When the system reaches the point where it is in-
variant under this transformation, it has reached a stable,
self-similar state in which it will remain for  — oo.

To describe the flow of the theory to its fixed point we
define a Callan-Symanzik 3 function [10]. First we define
the renormalized coupling as the density at an arbitrary
but fixed late time 7. This is the analog of the normaliza-
tion point. The dimensionless coupling constant, which
will be invariant under rescaling, is then

gr =(Tr7)on(r) . (24)

We have restored the time constant I' in the problem,
since it is possible that renormalization effects may cause
an effective time dependence in I'p. This will be dis-
cussed at the end of Sec. IV. For the purposes of the
present argument we will assume that I is a constant and
can be absorbed intoc a rescaling of time. A late-time
correlation function of the system can be expressed either
in terms of the random initial state evolved in time, or
from the normalization point where the initial state infor-
mation has been lost. That is, for some correlation func-
tion G(r,t) we have

G(r,t,ng)=Gg(r,t,gg,7) . (25)

The value of G is independent of the normalization scale,
so

0

3 =0, (26)

rt,ng

which implies a Callan-Symanzik equation

s) d
T—+B(gr)— Gz =0, (27)
aT gR agR rt,ng R
where
s)
Blgg)=r—R ) (28)
o7 |rt,ng
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If G; has dimensions (length)”, then dimensional analysis
gives

13, d
e o

7 0
—_ »,8R>» .
n 2 gRGR(r 8gRr 7)=0 (29)

Combining (27) and (29) to eliminate the explicit 7 depen-
dence gives

Gr=0. (30)

3 )
" [ Ty TR,

If B(gg )=0 for some value of the dimensionless coupling
gr, then

Gr=r"h(rt™%), (31)

which is the self-similar fixed point. Also, for gg(7)=g#
we find

n(t)y=gxt™¢, (32)

the asymptotic form of the density predicted in the ener-
gy dissipation arguments. The flow into this fixed point
for a given set of initial conditions is determined by the 3
function. We stress that in this formalism the assump-
tion of a zero of B is mathematically completely
equivalent to the statement that n(t)té—>const, but it
gives a conceptually different approach to the problem,
and from an approximation standpoint, a method for ex-
trapolating from the early- to the late-time regime. In
Sec. IV we will discuss a method for finding the B func-
tion in the large o limit.

C. Anomalous behavior for o =%

For the case of 0 =4 we find that the expected power-
law behavior of n(t)~t ¢ is not observed. The simula-
tions, shown in Fig. 5, exhibit less than convincing

- —
-1.5 - —
= 2 oo =
= [ % ]
= L ° ]

” ° o
E r a D: o .|
I, —25 - . 0 100 . o
— [ 2 200 . ]
E - : o 400 4
3l . ° 800 o=1/2 ]
_In P 1 L L |

-5 0 5
In t

FIG. 5. Simulations for o= % The initial density is fixed at
no=1, and the system size varies from L =100 to 800. On the
vertical axis is plotted In(z2/*n), which should be a constant in
the scaling regime. The data show strong system size depen-
dence, and no range over which the density has the expected
t~2* power-law dependence. The line drawn represents
n~1t~%7 The error bars for the L =800 data are smaller than
the size of the points plotted up to Int =4.
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power-law behavior, and the density decays with an ex-
ponent of at least —p=—0.75. From the scaling forms
(20) and (21) it follows that this implies either a depen-
dence on n, at late times, or dependence on the system
size L, or both. The data indicate a fairly strong L
dependence.

These simulations are quite difficult. We attempted to
reproduce periodic boundary conditions by including in-
teractions wrapped around the system, up to some long-
range cutoff. For o =1 the system is more sensitive to
the cutoff than in the previous cases, and requires in-
clusion of many more replicas to simulate periodic
boundary conditions (for a discussion of our methods see
Sec. VI). We were unable to average over as many reali-
zations of the system, and as a consequence the statistical
error bars in the numerical results are appreciable toward
the later times. The data are too imprecise to determine
whether the system is independent of the initial density,
as was shown for o =2 in Fig. 2.

We now present a heuristic argument for the lack of
dependence on the initial density, which holds even when
the system shows L dependence. Consider a system
which has evolved some very short time 8¢. Then

n(8t)=ny®(ny8t%,8t°/L)
=n,—2n38t°+0(8:%), (33)

where x=n0t§,y=t§/L, and the coefficient of the 8¢
term, 9®(0,0)/dx =2, is found in Sec. IV. Also in Sec.
IV we show that there can be no L dependence until at
least order n(3,, so d®(0,0) /9y is zero. In this short time
8t the system will build up correlations, but primarily at
short distances. This short-distance information is quick-
ly leaving the system via annihilation. We assume that
although there are long-distance correlations building up,
they, nevertheless, depend on only one length scale, given
by n(t). This assumption is expressed in terms of (20) by
taking ny—n(5t) and t —t —6¢, so that

no®(nyté,t5/L)
=n(8t)P(n(8t)t—>56t)°,(t—86t)°/L) . (34)

If we expand the right-hand side of the equation to order
8t (£<1) then
D

n(t)=n0<b—26t§n%<l>—28t§ngx~a; . (35)
Setting the O(8t%) term to zero gives the differential
equation

oP

x¥=—<1> , (36)

which has the solution
D(x,y)~gy)x L. (37)

This argument predicts that the late-time behavior will
exhibit lack of dependence on ng, even though it may de-
pend on L through g(y). The form of the function g(y) is
unspecified, and may play a direct role in the asymptotic
time dependence.
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The original argument which led to Eq. (34) is difficult
to make rigorous. The result of the calculation can only
be true for asymptotically late times. The short-distance
correlations take some time to leave the system before the
long-distance correlations dominate the dynamics.

We have also simulated the Q — o Potts model for
values of o =1 and 2, and found that the naive result
n~t~¢% is consistent with the data for both values of o.
The data are shown in Fig. 6. One might expect to see
different behavior from the Ising system, since in the
Potts case there is no need to include multiple wrappings
in the interactions. For periodic boundary conditions the
only requirement is to include the interaction between the
first and last charge.

IV. FUGACITY EXPANSION

A technique for calculating the density n(z) and other
correlation functions as expansions in powers of the ini-
tial density n, is developed in this section, and this result
is used to calculate the B function defined in Sec. III to
order g,‘g, from which we estimate the fixed point cou-
pling g5.

A. Machinery

We can use the ideas of equilibrium statistical mechan-
ics to calculate quantities which are averages over the
distribution of initial conditions. In doing so it is neces-
sary to use finite systems, although at the end of the cal-
culation the L — o limit may be taken, if it exists. The
cancnical ensemble, with a fixed initial density, is too
difficult to work with, so instead we use the fixed fugacity
or grand canonical ensemble. One can check afterwards
that the fluctuations in the grand canonical ensemble are
of order 1/V'L. The average of some quantity is calcu-
lated by expandin% in powers of the fugacity y. The
coefficient of the y* term is given by the integral of this
quantity over all the initial conditions for the k-body sys-

—= T T T T
o MMMAMAAAA% T ]
%9000, %0,
L o0, o, |
L o DD“DD » -
5 s
L o, . AAA -
-1 ]
- ngn -
~~ - Dge |
-+ %,
~— - Enu —
c r Anu%u j
) o,
= | Potts Model A il
—
i o =2 %
r a g=1/2 7
-3 —
L n | L L | L L | N
-5 0 5
In t

FIG. 6. Simulations of the Q — o Potts model for o= ; and
2. The lines for both data sets correspond to the n ~¢ ¢ curves.
For both values of o the initial density n,=1 and the system
sizes L =100, 300, and 1000 are used. The data superpose very
well for the different system sizes.
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tem. To normalize these averages we use the analog of
the grand canonical partition function
E=3y"v, (38)
k
where V is just the volume of configuration space for the

k-body system. We will work with ordered charges, so
this volume is ¥, =L*/k!. From this it follows that

=e’L | (39)

[x]

The initial number of charges can be found in terms of
the fugacity, since the value of N, for a k-body system is
just k.

k
NO)=E"' 3yt
2.V

_ (yL)k—l
f— yL —
yEe X =

=yL . (40)

Therefore the fugacity is equal to the initial density n,.

The calculations are actually simpler for a nonperiodic
system. It is then important to comment on the bound-
ary conditions, that is, the values of the spins at x =0 and
L. The spin degeneracy factor of 2 can be ignored, leav-
ing as the possible boundary conditions either the spins at
each end being equal, or being opposite. These corre-
spond, respectively, to there being an even or odd number
of charges in the system. For convenience, we sum over
both cases, corresponding to free boundary conditions on
the Ising spins.

We can use the fugacity expansion to calculate the
time-dependent number of charges N(¢). First we define
Ni(xy,...,x;,t) to be the number of charges that
remain at time ¢, given k charges at ¢t =0 with initial posi-
tions x,x,,...,x;. For regions of the configuration
space of initial conditions where no annihilation has oc-
curred by time t, Ny (¢)=k. For regions where exactly
one annihilation has occurred by time ¢, N, (t)=k —2.
This continues down to regions where N, (¢)=0 or 1,
after which no more annihilation is possible. Integrating
N, () over the distribution of initial conditions gives the
coefficient of the y* term in the fugacity expansion, which
we define to be Q; (¢). That is,

k
0, ()= [ TI @xNi(xy, - .o, xp08)
i=1

<xy; < <x, <L
41)

Calculating Q,(¢) for the random distribution is then a
process of partitioning the volume in configuration space
by the number of charges at time ¢, and then summing
these regions weighted by their respective charge num-
bers.

In general the division of configuration space at time ¢
into regions of k, k —2, etc. charges requires solving the
k-body problem given by our equations of motion. The
two-body problem can be solved for all o, and was found
in the preceding section and used to rescale time t. We
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can use this result to calculate Q,(¢) for general o [note
that Q,(z)=L for all t]. As defined

Q)= dxdx;20(x,—x,—t%), (42)
1<%

that is, there is a contribution of 2 from regions of the in-
tegral where x,(0)—x,(0) is greater than the annihila-
tion distance given by ¢, and a contribution of zero from
the rest, with © being the Heaviside step function. The
integration variables are the initial positions of the parti-
cles. The time dependence is explicit in the integrand.
Integrating gives

Q,(t)=L2—2Lt*+t% . (43)

This allows us to calculate 7(¢) to order y2. Expanding

E " 1=e 7L to order y gives
N(t)=(1—yL)YO0+yL +y2L?*—2y2Lt*+y%t?)
+0(y?)
=Ly(1—2yt5)+0(L%y?) . (44)

Dividing both sides by L and taking the L — o« limit (or
just considering L >>t°) gives

n(t)=no[1—2nyt*1+0(n3t%*) (45)
or, from (21),

f(x)=1—2x+0(x2) . (46)

B. Large o calculation

The higher-order terms become quite difficult. We can
solve the three-body system for o =1 (see Appendix B),
but in general some simplification is needed to proceed.
By taking the large o limit the equations of motion
effectively decouple, and we can solve for the higher-
order terms. As stated earlier, this limit merits con-
sideration since the value of o seems to play only a minor
role in the nature of the fixed point which characterizes
the late times, at least for o > 1. For the three-body case
the equations of motion can be reduced to two equations
by introducing the variables r;=x;,,—x;. In terms of
ry,r, the equations of motion are

Fr=—2r{°+ry, 2 +(r+ry,)" 7%,

Fa==2ry " +r?+(r+r)" 7. (47)

Now suppose r; <r,. In the large o limit the equation of
motion for r; becomes

Fi=—2r{° (48)

and the charges have decoupled. More exactly, the
closest pair moves together and annihilates in a time that
is infinitely smaller than the time scales of the rest of the
charges. With these simplified dynamics we are able to
calculate the higher-order terms.

For the kK =3 case we divide our configuration space
into two regions corresponding to the order in which the
charges annihilate: r, <r, so x,x, annihilates first, or
ry>r, SO X,,x; annihilates first. The equations of
motion are symmetric with respect to r; and r,, so we
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can consider just one of these conditions, say r, >r;, and
double the resulting calculation. We have

05(1)=2 d3x ©(r,—r;)

0<x, <x,<x3<L
X[30(x,—x, —t°)
+O(t5—x,+x,)]. (49)

We can rewrite the term in square brackets as
3—20(t°—x,+x,). To evaluate this integral it is con-
venient to take the derivative with respect to t¢, which
turns the © function into a & function.

aQajit) =2f0de3 f:3dx2f0xzdx16(x3~2x2+x1)
X(—2)8(t5—x,—x,)
=—2L2+8Lt*—8t% . (50)
J
3Q4(1) _

oL J‘r1+r2+r3<L
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Integrating this we get

Q (t)=L—3—2L2t§+4Lt2§—§t3¢ (51)
3 ) 3 >

where the constant of integration is given by the =0

value, Q; =kL k/k1.

To calculate the k =4 integral we divide the con-
figuration space into three regions, distinguishable by
which pair annihilates first: (1,2), (2,3), or (3,4). By sym-
metry the first and last cases give identical contributions
to the integral. The next step in evaluating the integral is
to take the derivative 8Q,/8L. The L dependence of the
integral is contained in the ©(L —x, ) term implicit in the
limits of integration. The L derivative replaces this ©
function with a 8(L —x; ), against which we can integrate
x;. The remaining k —1 integrals over the x; are
changed to integrals over r; with the constraints
Sk=lr.,<Land r;>0. Then

dr,dr,dr;[26(r;—r)0(r, —r){20(r, —t5)+260(r; —t°)}

+0O(ry—ry)0(r; —r,)(260(r, —t5)+20(r +ry,+r;—15)} ] . (52)

By taking the t¢ derivative as before, the integral can be
done fairly straightforwardly, with the result

92Q,(1)

= 3024 14Le5— 3842 (53)
dt*dL 3

Integrating this we get

4
0.(1)= £6— —L%+ %th”— %S—Lt3§+const><t4§ :

(54)

where again the initial value of Q, is used to find the con-
stant of integration. The unknown function of ¢ is pro-
portional to ¢, with a proportionality constant which
could be calculated by evaluating the integral without the
L derivative.

On the basis of the scaling relation (21) one might
think that the only piece of the y* integral that is of in-
terest is the ¥~ 1% term. In this case we could take k —1
derivatives with respect to z° and then evaluate the
remaining integral for ¢t =0, a considerable simplification.
However, it turns out that all the pieces from lower-order
terms, and not just the k=D& piece, feed back into the
calculation of higher-order terms. This is a consequence
of boundary effects introduced by working with a non-
periodic system. Writing a more careful scaling form for
N (t) where both ¢ and L are finite we get

N()=Lyf(yt*)+g(yt?) , (55)
where f is the original scaling function, and g some func-

tion which corresponds to our choice of boundary condi-
tions. Writing f(x)=3,f;x'and g(x)=73,g;x’, we find

[
3 v Qi (t)=N(t)e’t
k

=Ly(1+f,yt°+ foy %+ f,y3t3)e?t
+(gotgytétgpit¥+gayit®
+gy4¥)e’t+0(yt%) . (56)

The coeflicients for f and g can be determined by com-
paring powers of y on each side of the equation. In gen-
eral, extracting the coefficient f; from the (k +1)-body
integral requires knowing all the g; for i <k. To order y*
we find that g(x)=x2—(§)x3+0(x4) and

fx)=1—2x+3x*—%x3+0(x*) . (57

This density expansion is the main result of this calcula-
tion.

With a systematic expansion for the scaling function
(21) we have equivalently an expansion for the 8 function

defined by (24) and (28) in powers of ggp. Since
gr(x)=xf(x),
d
UB=x-d;gR(x)
=x —4x2+9x3—1—36—x4+0(x5) . (58)

To find B(gg ) we invert the series g (x), which gives
oB(gr)=gr —283 —282 —Lgi+0(g}) . (59)

The fixed point value of gy if B is truncated at the fourth
order is gg =0.33. Truncating to third order would give
ga=0.37, a 10% difference. The value of gg is the am-
plitude A in the asymptotic form of the density
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n(t)~ At =% . (60)

This number should be universal in that all systems with
the same value of o (but different n,) will have the same
amplitude. We suspect only a weak o dependence of this
number for values of o > 1. The amplitude found from
the numerical data for both 0 =1 and 2 is 4 =0.31.

C. o =1 calculation

While this approach of calculating the large o terms
may give a description of the fixed point, our real goal is
to work with values of o which lie in the range of physi-
cal interest. The two-body solution is known for all
values of o. For the three-body term the relevant calcu-
lation is the time to the first annihilation, T'(r,r,).
In the large o limit this was just given by T
=min(r,r,)!*?. For finite o the presence of the third
charge will affect the annihilation of the first and second
charges, and always in the direction of slowing down the
process. This slowing down will be a maximum when r,
and r, are approximately equal. In Fig. 7 curves of con-
stant T are plotted in the plane of initial conditions 7, 7,.
The curve for the large o limit is given by vertical and
horizontal lines, while the o =1, constant T curve lies to
the left and below. For any value of o the area bounded
by the corresponding constant 7" curve is proportional to
9Q;(t) /3L, as can be seen by writing out the integral

aL __zfr1+r2<L

Finding Q;(¢) for 0 =1 is then a matter of finding the
area between the T'(r,r,)=t curves for the large o limit
and o=1.

For o0 =1 an exact solution for T(r,r,) can be found,
the details of which are given in Appendix B. The result,

dridr,©(t —T(r,ry)) . (61)

L
—Ar,
g
el large o
o=1
0 ' L
"% ry

FIG. 7. Curves of constant time to annihilation, T(r;,r,)=t¢,
in the (r,r,) plane for =1 and the large o limit. The area
bounded by these curves, the axes, and the line r; +r, =L gives
0Q,(t) /3L, as shown in the text. The contribution to the area
between the o0 =1 and large o curves from the asymptotic re-
gion is divergent as L —co. This can be shown by integrating
Ary(ry,t) out to r,=L.
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however, gives an area between the two curves which
diverges as L— . This is a general feature which
occurs for all o <1, which can be understood by examin-
ing the equations of motion. Consider a three-charge
configuration where one separation distance, say r,, is
much larger than the other. The equation of motion for
the closer pair is then

ri¥

r%"

2(1+o)F=—2r; ° , (62)

r
1——+0
r;

where the factor multiplying the left-hand side is a conse-
quence of our rescaling of time in (17). We treat r, as a
constant in the equation, and integrate the dynamical
variable 7, from its initial value to zero,

3(7

(1+0) f dt_“f dr

r"+—+0
2

] . (63)

This gives T(r,,r,) in the asymptotic region described.
Performing the integral and inverting to find »,(T,r,;)
gives

TE1+20)

r%"

T
(1+20)rg

TS—

rl(T,rz): (64)

The first term is just the large o solution, so the second
term gives the leading contribution to Ar;=r{®)—r{".
Integrating Ar,(r,) out to r, =L gives the area contamed
in the asymptotic approach to the constant T line of the
large o limit. For o=1 this piece gives logL, and for
smaller values of o it gives an L !t term. The
significance of the divergences is that they will not cancel
when the fugacity expansion is summed, as all the other
L-dependent terms do. For o >1 the area remains finite
as L — o, and so the calculation for o > 1 should result
in the same terms as in the case of the large o limit, but
with modified coefficients.

It is possible that there may be an infinite set of loga-
rithms (for o =1) which can be summed to restore the in-
tensive behavior of the density. Such a summation may
then be used, as in conventional critical dynamics [11], to
renormalize the kinetic coefficient T, effectively making
'y a time-dependent quantity. While this would imply
no system size dependence and the density scaling form
(21), the time dependence of I', would give rise to anom-
alous time dependence for the density, as can be seen by
(24). This anomalous time dependence carries with it the
implication that late-time dynamics will exhibit depen-
dence on the initial density.

An alternate possibility is that these divergent terms
are indicating that the asymptotic dynamics truly has
system size dependence. If the system were still indepen-
dent of the initial density, as suggested by our heuristic
argument in Sec. III, then this system size dependence
would give rise to anomalous time dependence, as can be
seen by the scaling function (20). It is worth noting that
if there is system size dependence, we can no longer ex-
cept our calculations, which are performed with free
boundaries, to correspond directly to simulations with
periodic boundary conditions.
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It is possible that both of these effects, system size
dependence and a time-dependent I'y, occur. The simu-
lations for o =, as discussed in Sec. III, are not decisive
on this issue, although they do seem to indicate at least
the former.

By studying a related model we might hope to find
more clues for the significance of the divergences in the
fugacity expansion. The Q — « Potts model provides a
contrast which further confuses the problem. In the Is-
ing case the divergences were caused by a three-body
effect where the annihilation of a close pair, say (x,x,),
is slowed by a distant charge, x;. In the Potts case the
distant charge is still interacting with the nearest neigh-
bor, x,, but not with the charge at x;. This will give ex-
actly half of the divergent effect seen in the Ising case.
However, the simulations show no system size depen-
dence, to within our accuracy.

There is a difference between the two models in the
higher-order divergent terms. Presumably the four-body
term in the Ising case will have divergent pieces when
one of the end charges, say x,, is distant, and is affecting
both of the possible annihilations: (x;,x,) and (x,,x3).
In the Q— o« Potts case, the distant charge can only
affect the annihilation of the pair which contains the
nearest neighbor of the distant charge, in this case
(x,,x3). However, a quantitative analysis of this effect at
higher orders is difficult.

V. TRUNCATION SCHEME
FOR THE TWO-PARTICLE
DISTRIBUTION FUNCTION

The fugacity expansion provides an exact scheme for
calculating time-dependent quantities in the system via
the deterministic equations of motion. A simpler scheme
can be developed which gives a qualitative description of
the scaling regime, and of other features of the model. In
this section we will present this method, and discuss the
applicability for some different initial conditions.

The two-particle distribution function for the system,
n,(r,t), can be used to find a dynamical equation for
n(t). Integrating the distribution function from »=0 to
Or gives the density of charge pairs which are within &7 of
each other. For very small separations the charge pairs
will become isolated from the rest of the system, and an-
nihilate in a time 8¢ =8r!/%, Therefore the rate of change
of the density is given exactly by

dn . 2 8t

—= —-= t)dr .

7 = Jim - fo n,(r,t)dr (65)
The distribution function can be calculated by the

fugacity expansion described in the last section. The

leading-order term is the two-body term, which can be

written

2 —
ny(r,t)«y fr(OKLdr(O)S(r(t) r). (66)

A change of integration variables from #(0) to r(z) will
introduce the Jacobian

_ dr(0) _ re
J(r,t) dr(t) )=r (r1+a+t)0/(1+0) ’ (67)
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which has the limit J=1 for r— o or t =0. Therefore
the distribution function is

ny(r,t)=n3J(r,t)+0(n3) . (68)

Notice that the dynamics produces a “hole” in the two-
particle distribution function at short distances.

This expansion is only useful for low densities or early
times. However, we can extend the range via a heuristic
argument similar to that of Sec. III. For an isolated pair
of charges separated by a distance r at time ¢+ 8¢, the
separation at time ¢ is given by (r!17+8¢)°. Therefore,
for small r we expect the two-particle distribution func-
tions of the arguments above to be related. The relation
should also include the Jacobian, for the same reason it
enters into the £ =0 calculation. Therefore

ny(r,t +8t)=J(r,8tn,((r'*o4+581)%,1)
+ (higher-order terms) . (69)

This equation should be exact in the small r limit, and the
higher-order terms are corrections for large . The con-
tributions from the higher-order terms can be approxi-
mated by replacing n,(r,t) with ,(r,t)=n,(r,t)/n(t)?
so that 7i,(r—o0,z)=1. This results in a truncation
scheme for 7, which is correct both for small r and in the
r— oo limit. Making this substitution and equating the
order 8¢ terms in (69) gives the differential equation

on n on
:__|_o 2 1 1 on, (70)
at 140 | plte 1+o | r° Or
whose general solution is
fiy(r,t)=rog((r'*o+1)5) . (71)

For large x, we must have g(x)~x ~? as determined by
the » — oo limit of 7,, corresponding to a scaling solution
for the distribution function

fiy(r,t)~J(r,t) . (72)

From (71) we see that this scaling form of 7,(r,t) will
also be the solution for large ¢. This is consistent with the
RG picture of an attractive fixed point which describes
the asymptotically late-time dynamics for all initial distri-
butions.

The solutions for 77, and Eq. (65) give two relations be-
tween the density and the distribution function. Using
the small r limit of the distribution function,
7i,(r,t)=r°t "%, we get the equation

an _ _ oen2e-

ot 2¢én’t N (73)
which is consistent with the scaling solution n ~¢ ~¢. The
amplitude is not correct, but the argument captures the
qualitative features at least. Note that no system size
dependence can appear in this approximation. For un-
correlated initial conditions the scaling solution for 7, is
valid at t=0. Further qualitatively correct results may
be obtained if we assume (72) holds for all . Then the
solution to (73) is
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ng F T T T 5
n(t)=———, (74) 50 e
1+2n4t¢ 8]
r o=2 8 ]
which exhibits the asymptotic time dependence, and also 40 E . ¢ ]
the lack of n, dependence, we see in the simulations for - . . ]
. | 30 — —

o 2 1. In fact, under the same assumptions we can find - C o’
g(x) for all values of x for correlated initial conditions. = o0 E et B
Setting ¢t =0 in (71) gives g et o A=0.05 ]
g(x)=x "%7,(x,0) (75) 10 | ;a:ggsED o random =
from which it follows that 0 745 e e

0 5 10 15
y(r,t)=J(r,t)i,((r'To+1)%5,0) . (76) e

Combining this with (65) gives
dn _

g;‘———zgnztg_lﬁz(tg,O) , (77)
which can be rewritten as
dn !
=27,(¢5,0) . (78)
dtt 2

Thus the late-time behavior of the density is completely
determined by the initial two-particle distribution func-
tion in this approximation. We can test (78) by introduc-
ing correlations into the initial conditions. In particular,
if we generate a system via the nearest-neighbor distribu-
tion

——, ng'(1—A)<x<ni(1+A
P(x)=12noa" "° X <Tho ) 79)

0 otherwise

then 7,(r,0) will be sharply peaked around r=n !, less
sharply peaked around »=2n, !, and so on out to infinity
where it is equal to 1. The first k=(14+A)/(2A)
peaks will have zeros between them, which implies
dn~'/dt*=0. Therefore we expect a plot of n ~! versus
t¢ to have flat areas separated by sharp jumps, like a
staircase, with the jumps smoothing to a straight line at
late times. The simulation results for these initial condi-
tions (shown in Fig. 8) verify the staircase pattern. Both
the truncation method developed here and the property
of lack of dependence on initial conditions are reinforced
by this result.

VI. SIMULATIONS

To simulate these systems we simply directly integrat-
ed the equations of motion

%= 3 (=1 x;—x;| "9sgn(x; —x;) . (80)
JjFi)

Whenever two charges pass each other they were re-
moved from the system. We began with some number of
charges N, distributed randomly along a length L. To
reproduce periodic boundary conditions exact replicas of
the charge configuration were made, and added to the left
and the right of the original system. Then the forces
were calculated on the original charges, the positions up-
dated, and the replicas replaced with updated copies.

FIG. 8. Simulations for the correlated initial conditions dis-
cussed in the text, for 0 =2, A=0.05, and N,=100. The data
are plotted as n ~! versus ¢!/, which should give a staircase pat-
tern as discussed in the text. The first three zeros of the slope
are clearly visible. The data for the random initial conditions
are plotted for reference.

While this emulates a periodic system, it also adds a
long-range cutoff to the interactions. It is important to
separate the effect of the cutoff from possible system size
dependence effects.

We parametrized the cutoff in the following way. If k
replicas are added to the left and to the right of the origi-
nal system, there are N, =(2k +1)N(¢) effective charges
in the system. We imposed a minimum number of
effective charges N ;,, and then determined the number
of replicas needed so that N,=N, ;. By comparing
simulations with different values of N_;,, we could deter-
mine at what point the results are independent of the
cutoff to our desired accuracy. We choose this method of
introducing a cutoff, rather than a more obvious choice
of including interactions out to a certain length, because
otherwise small number effects entered into the simula-
tions at late times. By keeping the effective number of
charges at some minimum level we hoped to more accu-
rately model the truly periodic system. The values we
used for N are given in the table.

The numbers for N, are large enough, particularly
for o =1, to significantly slow the simulations. Some
speed can be regained by exploiting the insensitivity of
the system to the time step. For 0 =1 and n,=1 we used
an initial time step of Az =10"3, which we stepped up to
At =1 over the time interval t =(0,20) (for other values
of o see Table I). Although these values for the time step
seem large, the results of the simulation are quite insensi-
tive to the size. Simulations performed with ten times
this step size showed no appreciable change. This is
somewhat expected, since the primary consequence of a
large time step is to cause the annihilating pairs to stay
around longer, but the force exerted on the system by a
very close pair of charges is nearly zero. It is probable
that an even larger time step than the one used here
would be adequate.

We used the second-order Runge-Kutta integration
technique, which involves initially taking a half step,
reevaluating the forces at this midpoint, then going back
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TABLE 1. Values of the simulation parameters used. For all
simulations n,=1 and N, =100, 200, 400, 800. The time step is
ramped from 107 3At¢ to At in the range 0 <7 <1,, and is equal to
At for t > t,,.

Nr Nmin At Zo
o=1 300 400 1 20
o=1 1000 30 0.1 2
o=2 1000 20 0.03 0.6

and taking a full step with the modified forces. To use
this method it is necessary to check for annihilation at
the midpoint, or else the forces calculated at the mid-
point for a pair which has just passed each other will be
quite inaccurate. It seems likely that using the Euler in-
tegration method instead of Runge-Kutta would give the
same results.

The third parameter in the simulations is the number
of runs over which the quantities are averaged. That is,
since the quantities are supposed to be averaged over the
distribution of initial conditions, we average over multi-
ple runs. To determine the number of runs N, over
which to average, we calculated the standard deviation of
n(t) via the central limit theorem. For o=1 we used
N,=300, for which the one-o error bars were smaller
than the point size of the plots for much of the scaling re-
gime.

These simulations were performed on a DECstation
5000. Our goal was to use as simple an algorithm as pos-
sible, and to keep simulations at the level of a worksta-
tion problem. There are ways in which our techniques
could be expanded or improved upon, for example, by us-
ing a controlled time step which maximally exploits the
insensitivity of the system, or of course, by using faster
computers. It would be preferable to push the o =1 sys-
tem to larger values of N, but this was where we were
reaching our limits.

VII. DISCUSSION

The first of the principal results of this paper is the ap-
pearance of system size dependence in simulations for
o=1. We believe that this result also holds for all
0<o =1 on the basis of our fugacity expansion, which
demonstrates anomalous L dependence in the expansion
coefficients for this range. The data for o =1 exhibit only
slight L dependence. However, the effect may be very
small at the marginal value. This result could bear a
more thorough scrutiny via simulations, particularly if
data for larger system sizes can be generated.

The other principal result is the possibly more general
dynamical feature of lack of dependence on the initial
length scale. From a renormalization-group perspective
this is an intuitive result: once the system has reached
the fixed point, and is thus evolving in time via a rescal-
ing of the domain length only, then the information
about the path to the fixed point is lost. For the distribu-
tions we used, the information lost is the initial density
and correlations. A variety of distributions may flow to

2463

this same fixed point, which can then be interpreted as a
loss of information about the initial distribution itself,
and not just its length scale. This is suggestive of a
dynamical feature of lack of dependence on prequench
temperature, if thermal distributions flow to the same
fixed point. The RG picture is complicated by the pres-
ence of system size dependence, since the notion of a
scale invariant fixed point will need modification. In the
simulations we find a convincing lack of n, dependence
for 0=1,2, and a possible lack of n, dependence for
0=%. We also find, via a heuristic argument (34), that
the presence of L dependence should not affect the lack
of dependence on the initial length scale.

Our theoretical approaches include the fugacity expan-
sion and the truncation method of Sec. V. The latter ap-
proach is useful in providing a qualitative description of
the dynamics, and includes quite naturally the dynamics
at late times. In the former case, the original intent was
to find results for the infinite system while calculating
with finite L. We can find all the expansion coefficients
for 0 =0, and thus the exact answer for n(z) (see Appen-
dix C), but we find that the density decays exponentially.
This indicates that o =0 is singular in some sense, and
that trying to expand about this solution is not likely to
be fruitful. We can calculate the expansion coefficients to
order y* by taking the large o limit. This calculation can
be carried to higher orders, the problem becoming an ex-
ercise in bookkeeping. When we attempt to extrapolate
the large o result to lower values of o we find divergences
appearing in our expansion coefficients. This is a general
feature for o =1, the physical range of interest. These
divergences are of the form of L-dependent expansion
coefficients, whose presence may just be indicating system
size dependence in the density #n(?).

Our expression for the density in the large o limit can
be used to calculate a Callan-Symanzik B function to or-
der g#. To this order the B function has a zero with the
value gz =0.33 which predicts the scaling function (21)
has the asymptotic form

f(x)~0.33x "1, (81)

This B function approach, while useful in giving a quali-
tative description of the fixed point, may not give a
robust value for the coefficient of the asymptotic region.
If we take the same f(x) used to derive the 8 function
and use the method of Padé approximants, we find for
large x

f(x)~0.15x "1, (82)

Unfortunately, we have not been able to find any analog
of the € expansion of the equilibrium critical behavior,
which would allow a systematic truncation of the series
for the 3 function.

The one-dimensional system with long-range interac-
tions appears to have complicated behavior for o =1.
These interactions appear to be relevant in higher-
dimensional systems as well [5], suggesting that system
size dependence may be a more general feature of long-
range interacting systems. Simulations of these systems
in higher dimensions, although difficult, could yield in-
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teresting results. More can be done with the one-
dimensional simulations in the way of measuring correla-
tion functions as well. A theoretical approach which
treats the system size dependence in a controlled way,
perhaps some modification of our density expansion,
would be a possible next step in trying to understand
these systems.
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APPENDIX A: Q-STATE POTTS MODEL

We can generalize the Ising model Hamiltonian (1),
which is the Q =2 Potts model, to the case of general Q.
At each lattice site there is a variable s;, which can be in
one of the Q states. The Hamiltonian is defined by

H=—=3 V(x;—x;J(s;,s;) , (A1)
iJj
i<j
where V(r) is the same as before, and
J(si,sj)=1—83isj . (A2)
We can rewrite the Hamiltonian as
H=73 Ulx;—x;)[J(s; 41,5, +1) T (s;,58;)
iJj
i<j
—J(si41,8;) = I (55,85 41)]
~+ (surface terms) , (A3)

where the function U(r) is defined by (4) [12]. Notice the
expression in the square brackets is zero for s; =s;,; or
5;=5;+1. Therefore this term only contributes to the en-
ergy when x; and x; are both locations of defects. A de-
fect can be labeled by (a,f), meaning it is the boundary
between a region of state a and a region of state 5. The
interaction for a pair of defects of type (a,) and (y,5)
separated by a distance r is then

Hpair: U(r)[8a7+855_8a8_5[37/] . (A4)

Consider a nearest-neighbor pair of defects. This im-
plies B=v, and we assume a78. The interaction energy
is then

H,.=—U(r). (A5)
Also note that if all four states a,f3,7,8 are distinct then
there is no interaction between the defects. Now we take
the Q — oo limit of this model. Every domain in the sys-
tem will find a unique state, and so all defect pairs will
have a,f,7,8 not equal, with the exception of nearest
neighbors. These rules allow us to drop the designation
of the states, and simply consider the model to be one
where only nearest neighbors interact. The defect Hamil-
tonian can be written as

H:—z U(xi_xi+1) . (A6)
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We introduce the same equations of motion as before,
with the consequence that now only the nearest neighbor
on either side is included in calculating the force. There
is another modification to the dynamics. When a
nearest-neighbor pair annihilate, a single defect remains.
That is,

(a,B)+(B,7)—(a,y) . (A7)

APPENDIX B:
THREE-BODY PROBLEM FOR o =1

We start by taking the L derivative of Q;(¢), leading to
the calculation in the (r;,r,) plane as shown in Fig. 7.
We want to solve for the function which gives the time to
first annihilation, T(r,r,). From this we can find Q;(¢)
via

9Q;(1)
aT__z r1+r2<Ldr1dr26(t—T(rl,rz)) . (B1)

The time to annihilation has the scaling form

T(ry,ry)=rif

. (B2)

r
’

2

If r, and r, are evolved by a time 8¢, then T will change
by —&t. That is, for r=r,/r,

T—8t=(ry+#,8t)2f(r+#8t), (B3)
so to order 6¢ we get the equation
2ry iy f(r)+rdif'(r)=—1. (B4)

The three-charge equations of motion given by (47) and
the rescaling of time (17) give

1 2 7
4r2r2 r rytr,
1 1
=—2+—++ BS5
r r+1 (B5)
and
| .
Zrzr—rzrl—rlrz
2 1 r
=—=42r+—-- .
P (B6)

Therefore r, can be eliminated from Eq. (B4), giving the
differential equation for f(r),

2(1—2r2)
(r—1)(2r*+3r+2)

[ +f'(r)

_ —4r(r+1)
(r—1)(2r24+3r+2) °

Notice that the coefficients are singular at » =1.
This equation can be integrated in closed form, which
is somewhat surprising, with the result

f=%1+r+r)+Cr—172r*+3r+2)*7,  (BY)

(B7)

where C is a constant of integration. To determine C we
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consider the large 7 limit of f(r). If r; >>r, then the time
to annihilation is given by the separation r, only, and is
T=r3. This implies for large », f(r)=1. If we choose as
our integration constant C = —28/7 /3 then the #? and »
parts of f(r) have coefficients of zero. Therefore the ex-
act solution is

[ES

fin= 3(1-+-r-f-r2)
28/7 )
-3 (r—12702r%+3r+2)%7 . (B9)

When we plot T'(r{,r,) on the (r;,r,) plane (see Fig. 7)
we see a cusp at r; =r,. The appearance of the exponent
1/7 is curious. When we use this solution to calculate the
area between the o0 =1 and the large o curves, we find
this area is divergent, as mentioned in the text.

APPENDIX C: =0 SOLUTION

For the 0 —0 limit of the model we have the equations
of motion

xi:—ﬁ?f 2 (—1)j+k|xj—xk|
i gk
j<k
= 3 (—Dksgn(i—k) . (C1)
k (i)

The force on a given charge does not depend on the posi-
tion of its neighbors, only on the global excess of charge
on either side. It is necessary to consider only systems
with even numbers of charges, since a system with an odd
number of charges will have all forces equal to zero. For
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an even charge system the charges will be attracted in
isolated pairs. That is, the leftmost charge, call it posi-
tive, will see a net negative charge to the right. The
second charge from the left will be negative and see only
a net positive charge to the left. This pair will then move
toward each other an annihilate independent of the rest
of the system.

The time-dependent density in this model is entirely
determined by the probability distribution for the loca-
tion of the nearest neighbors. For the random initial con-
ditions we used, this is a Poisson distribution

P(x)dx=nge “M%ax (C2)

where P(x)dx is the probability of the nearest neighbor
being located between x and x +dx. At a given time ¢ all
the paired charges which are located within a range
Ax(t) will have annihilated. For the rescaled time given
by (17)

Ax(t)=t . (C3)

The fraction of initial charges which remain at time ¢ is
then

Er—l(ot—) =1- fotdx nge"*"
=e " (C4)
so the density scaling function (21) is
flx)=e ™. (Cs)

This result can be found also by using the fugacity expan-
sion for o =0.
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